We report the study of a Dy-based metal-organic framework (MOF) with unprecedented magnetic properties. The compound is made of nine-coordinated Dy magnetic building blocks (MBBs) with poor intrinsic single-molecule magnet behavior. However, the MOF architecture constrains the MBBs in a one-dimensional structure that induces a ferromagnetic coupling between them. Overall, the material shows a magnetic slow relaxation in absence of external static field and a hysteretic behavior at 0.5 K. Low-temperature magnetic studies, diamagnetic doping, and ab initio calculations highlight the crucial role played by the Dy-Dy ferromagnetic interaction. Overall, we report an original magnetic object at the frontier between single-chain magnets and single-molecule magnets that host intrachain couplings that cancel quantum tunneling between the MBBs. This compound is evidence that a bottom-up approach through MOF design can induce spontaneous organization of MBBs able to produce remarkable molecular magnetic materials.