Background: Hepatorenal syndrome (HRS) is a life-threatening complication of cirrhosis and early detection of evolving HRS may provide opportunities for early intervention. We developed a HRS risk model to assist early recognition of inpatient HRS.
Methods:We analysed a retrospective cohort of patients hospitalised from among 122 medical centres in the US Department of Veterans Affairs between 1 January 2005 and 31 December 2013. We included cirrhotic patients who had Kidney Disease Improving Global Outcomes criteria based acute kidney injury on admission. We developed a logistic regression risk prediction model to detect HRS on admission using 10 variables. We calculated 95% confidence intervals on the model building dataset and, subsequently, calculated performance on a 1000 sample holdout test set. We report model performance with area under the curve (AUC) for discrimination and several calibration measures.
Results:The cohort included 19 368 patients comprising 32 047 inpatient admissions. The event rate for hospitalised HRS was 2810/31 047 (9.1%) and 79/1000 (7.9%) in the model building and validation datasets, respectively. The variable selection procedure designed a parsimonious model involving ten predictor variables.Final model performance in the validation dataset had an AUC of 0.87, Brier score of 0.05, slope of 1.10 and intercept of 0.04.