2014
DOI: 10.1007/s00161-014-0339-8
|View full text |Cite
|
Sign up to set email alerts
|

Magnetic shape-memory alloys: thermomechanical modelling and analysis

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
13
0
2

Year Published

2015
2015
2023
2023

Publication Types

Select...
5
1

Relationship

1
5

Authors

Journals

citations
Cited by 17 publications
(15 citation statements)
references
References 76 publications
0
13
0
2
Order By: Relevance
“…Counting this analogy, one can assembly a model from already existing particular models for the martensitic transformation of the Souza-Aurichio type as e.g. in [1,27], for the ferro-to-para magnetic transformation as in [36] in combination (and ignoring gyromagnetic effects) as in [46], and for the metal/hydride transformation under diffusion as above in (3.10). When considering the magnetic variation slow and thus neglecting all induced electrical effects and when neglecting also the self-induced demagnetising field, one can consider the (vector-valued) phase field χ = (λ, m) composed from the volume fraction λ related to the metal/hydride transformation and m the magnetization vector.…”
Section: Example 33 (Magnetic and Hydride Transformations In Intermementioning
confidence: 99%
See 2 more Smart Citations
“…Counting this analogy, one can assembly a model from already existing particular models for the martensitic transformation of the Souza-Aurichio type as e.g. in [1,27], for the ferro-to-para magnetic transformation as in [36] in combination (and ignoring gyromagnetic effects) as in [46], and for the metal/hydride transformation under diffusion as above in (3.10). When considering the magnetic variation slow and thus neglecting all induced electrical effects and when neglecting also the self-induced demagnetising field, one can consider the (vector-valued) phase field χ = (λ, m) composed from the volume fraction λ related to the metal/hydride transformation and m the magnetization vector.…”
Section: Example 33 (Magnetic and Hydride Transformations In Intermementioning
confidence: 99%
“…Now κ 1 2 |∇χ| 2 occurring in (3.4) involves also κ 1 2 |∇m| 2 which is called an exchange energy in magnetism. Further considerations may go beyond the ansatz in Section 2 by involving global effects through a demagnetising field as in [36,Remark 11] or dynamical electro-magnetic effects including Joule heating through the Maxwell system possibly in an eddy-current approximation as in [46]. Example 3.4 (Water and heat propagation in concrete) An important application in civil engineering is water/vapor and heat transport in concrete undergoing damage and creep.…”
Section: Example 33 (Magnetic and Hydride Transformations In Intermementioning
confidence: 99%
See 1 more Smart Citation
“…Ферромагнитные сплавы Гейслера, в которых наблюдается эффект памяти формы, относятся к классу функциональных (интеллектуальных) материалов [1][2][3][4][5][6][7][8][9][10][11][12][13][14]. Конструкции из таких материалов могут существенно изменять свою конфигурацию под действием внешних тепловых, магнитных или электрических полей.…”
Section: Introductionunclassified
“…Выделяют два различных физических механизма, ответственных за инициирование больших деформаций (до 10 %) в ферромагнитных сплавах с памятью формы под действием внешних сил и магнитных полей. Один из них связан с восстановлением структурных доменов в мартенситной фазе и наблюдается в монокристаллических материалах или сильно текстурированных поликристаллических образцах [1][2][3][4][5][6][7][8][9]. При отсутствии приложенной механической нагрузки прямое фазовое превращение из кубической высокотемпературной фазы (аустенит) в тетрагональную низкотемпературную фазу (мартенсит) приводит к образованию сдвойникованных вариантов мартенситного состояния (структурные домены).…”
Section: Introductionunclassified