2017
DOI: 10.1016/j.apsusc.2016.10.170
|View full text |Cite
|
Sign up to set email alerts
|

Magnetic thermal dissipations of FeCo hollow fibers filled in composite sheets under alternating magnetic field

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0
1

Year Published

2017
2017
2023
2023

Publication Types

Select...
3

Relationship

1
2

Authors

Journals

citations
Cited by 3 publications
(3 citation statements)
references
References 20 publications
0
2
0
1
Order By: Relevance
“…As the magnetic hyperthermia technology concerns the human body, silicone oil has been chosen as the dispersive medium of the MNPs due to its biocompatibility for biomedical use, where the viscosity of the silicone oil was about 4.69 cs, which is very comparable to the human body viscosity 46–48 . To prepare the samples for heat elevation measurement, an ultra‐high sonication was performed to ensure the dispersion of the nanoparticles in the silicone oil, where the dispersion of the nanoparticles remained enough for measurement for more than 1 h. The calorimetric method was used to calculate the SLP as follows 49,50 :SLP0.28embadbreak=Csample0.28emgoodbreak×mMNPmcolloidgoodbreak×()ΔTΔt,$$\begin{equation*}SLP\; = {C_{sample}}\; \times \frac{{{m_{MNP}}}}{{{m_{colloid}}}} \times \left( {\frac{{\Delta T}}{{\Delta t}}} \right),\end{equation*}$$where Csample=0.28emmMNPCMNP+mS.OCS.Omcolloid${C_{sample}} = \;\frac{{{m_{MNP}}{C_{MNP}} + {m_{S.O}}{C_{S.O}}}}{{{m_{colloid}}}}$ is the specific heat capacity of the mixture (MNP and silicone oil, C S.O = 1.6 kJ/kg.K), m MNP , m colloid is the mass of the MNPs, and the composite (MNP+solvent), ΔT/Δt is the initial slope of the temperature profile over time.…”
Section: Resultsmentioning
confidence: 99%
See 1 more Smart Citation
“…As the magnetic hyperthermia technology concerns the human body, silicone oil has been chosen as the dispersive medium of the MNPs due to its biocompatibility for biomedical use, where the viscosity of the silicone oil was about 4.69 cs, which is very comparable to the human body viscosity 46–48 . To prepare the samples for heat elevation measurement, an ultra‐high sonication was performed to ensure the dispersion of the nanoparticles in the silicone oil, where the dispersion of the nanoparticles remained enough for measurement for more than 1 h. The calorimetric method was used to calculate the SLP as follows 49,50 :SLP0.28embadbreak=Csample0.28emgoodbreak×mMNPmcolloidgoodbreak×()ΔTΔt,$$\begin{equation*}SLP\; = {C_{sample}}\; \times \frac{{{m_{MNP}}}}{{{m_{colloid}}}} \times \left( {\frac{{\Delta T}}{{\Delta t}}} \right),\end{equation*}$$where Csample=0.28emmMNPCMNP+mS.OCS.Omcolloid${C_{sample}} = \;\frac{{{m_{MNP}}{C_{MNP}} + {m_{S.O}}{C_{S.O}}}}{{{m_{colloid}}}}$ is the specific heat capacity of the mixture (MNP and silicone oil, C S.O = 1.6 kJ/kg.K), m MNP , m colloid is the mass of the MNPs, and the composite (MNP+solvent), ΔT/Δt is the initial slope of the temperature profile over time.…”
Section: Resultsmentioning
confidence: 99%
“…As the magnetic hyperthermia technology concerns the human body, silicone oil has been chosen as the dispersive medium of the MNPs due to its biocompatibility for biomedical use, where the viscosity of the silicone oil was about 4.69 cs, which is very comparable to the human body viscosity. [46][47][48] To prepare the samples for heat elevation measurement, an ultra-high sonication was performed to ensure the dispersion of the nanoparticles in the silicone oil, where the dispersion of the nanoparticles remained enough for measurement for more than 1 h. The calorimetric method was used to calculate the SLP as follows 49,50 :…”
Section: Singlementioning
confidence: 99%
“…以下时, 其催化活性会显著增强 [22] ; 如球形银粉依 靠颗粒间的点接触可有效提高其导电性能, 被广泛 应用于导电浆料 [23] ; 针状或者纤维状磁粉具有各向 异性且矩形比大, 被广泛应用于高密度垂直磁记录 材料 [24] 。同样, 各种形貌的纳米 NiCo 2 O 4 材料的光、 电 、 磁 学 性 能 不 同 , 应 用 的 领 域 也 有 差 异 。 如 NiCo 2 O 4 纳米纤维结构稳定且能加速电子的转移, 对氧气析出反应有很高的电催化活性, 成为电解水 方 面 的 研 究 热 点 [25][26] ; 纳 米 花 、 多 孔 网 状 结 构 NiCo 2 O 4 材料的比表面积大, 可改善电解质的渗透 和离子转移, 在锂离子电池、超级电容器领域有着 巨大的潜力 [27][28][29] [30][31] 。常见的三维形貌包括球状、纳 米花、珊瑚状和三维复合结构等。合成三维纳米结 构的方法主要有水热法、溶胶凝胶法和微波合成 法等。 1.1.1 球状 球状是纳米材料最常见的形貌之一, 采用水热 法易得到球状纳米粒子。该方法采用水溶液作为反 应介质, 并通过加热反应容器产生高温高压的环境, 从而达到控制材料形貌的目的。制备过程中, 水热 反应主要控制 NiCo 2 O 4 纳米材料前驱体的形貌, 热 分解后即可得到球状结构的 NiCo 2 O 4 [32][33] 。水热法 简单、高效、易控且成本低廉, 目前被广泛用于纳 米结构的形貌控制合成。 Zou 等 [34] 以水、乙醇混合溶液作为溶剂, 尿素 作为缓释剂和沉淀剂, 通过水热法合成了三维结构 的 NiCo 2 O 4 微球。该微球由高长径比的超细纳米纤 维组成, 且纳米纤维作为结构单元呈放射状分布于 微球表面(图 1)。用这种结构的 NiCo 2 O 4 材料制备 的电容器, 其比容量高(电流密度 2 A/g 时比容量达 1284 F/g)、倍率性能良好、循环稳定性优越(3000 次 循环后仅损失 2.5%)。 Li 等 [35] [34] 球为 76.6 m 2 /g, 双层空心 NiCo 2 O 4 球为 115.2 m 2 /g), 提升了比容量(电流密度 1 A/g 下比容量从 445 F/g 上升到 568 F/g)。但碳球模板的使用增加了材料制 备的成本, 不利于大规模工业化制备。 与水热法不同, 溶剂热法采用有机溶剂为反应 环境, 有机溶剂的性质往往对产物的形貌有重要影 响。 Liu 等 [36] [37][38][39] 。An 等 [38] 使用 PVP 作为表面活性剂, 通过水热法制备了 三维花状 NiCo 2 O 4 , 其比表面积可达 212.6 m 2 /g, 当 电流密度为 1 A/g 时比容量高达 1191.2 F/g。然而该 条件制备的三维花状 NiCo 2 O 4 在充放电过程中易发 生结构坍塌, 循环稳定性不佳。Zhang 等 [40] 同样在 水热法中添加 PVP 并于 180 ℃条件下合成了花状 NiCo 2 O 4 , PVP 作为结构导向剂通过配位效应可以有 效地控制 NiCo 2 O 4 的形貌 [41] 。在反应过程中, PVP 通 过吡咯烷酮环上的官能团与金属离子配位, 有利于晶 粒的各向异性生长, 并将粒子组装成花状结构 [42] 。 此外, NiCo 2 O 4 表面上吸附的 PVP 在热分解过程中 发生脱附并放出气体, 有助于分级介孔结构的形 成。Cheng 等 [43] 通过水热法制备了三维花状镍钴氧 化物(图 2), 并研究了前驱体成分与热分解温度对 产物形貌的影响。结果表明前驱体中镍含量越高, 相同热分解温度下产物的比表面积越大, 其原因在 于 NiO 晶体尺寸更小且镍氢氧化物热分解温度更 高。另外, 热分解温度也是影响产物多孔结构与颗 粒大小的重要因素, 当热分解温度从 300 ℃升高到 500 ℃时, 比表面积缩小 1/4。 水热法虽易于控制产物形貌, 但要求严格控制 反应条件, 多数情况下还需要结构导向剂。而微波 法作为一种常用的辅助手段也可用于花状结构的合 成。微波辅助可以快速加热到设定温度, 促进结晶 过程迅速进行, 同时促使 NiCo 2 O 4 前驱体发生相转 变 [44][45] 。Lei 等 [46] [47][48][49] 。制备过程中, 表面活性剂、溶剂、反应时 间与温度是决定产物结构与形貌的主要因素 [50...…”
unclassified