“…With regard to the experimental NH 3 RR MVCD, there are significant differences between g~im and g~XV as shown in tables 3 and 4. The experimental g values found are (3,1) 1013.18 -7-5011 0"689 0.625 aR (3,2) 1012'44 -8"9039 0-817 0.620 aR (3,3) 1011"20 -7-7790 0-714 0.612 *aR (4,0) 1034.25 -6-3533 0"583 0'639 *aR (4,1) 1034.02 -6"8875 0-632 0.638 aR (4,2) 1033.32 -6"5698 0-603 0.634 aR (4,3) 1032.13 -7"3870 0.678 0.627 aR (4,4) 1030-42 -6.2780 0'576 0'618 aR (5,1) 1054.92 -5.4674 0'502 0'650 aR (5,2) 1054"26 -6"3600 0.584 0'647 aR (5,3) 1053-13 -8.7589 0.804 0.641 aR (5,4) 1051'51 -8'5563 0.786 0-634 aR (5,5) 1049.34 -8.3849 0.770 0-624 *aR (6,0) 1076-04 -7.6953 0"706 0-663 *aR (6,1) 1075.83 -10.0790 0'925 0.662 aR (6,2) 1075.21 -7'9050 0.726 0-660 aR (6,3) 1074. 16 -8.1976 0"753 0-655 aR (6,4) 1072"63 -5'5702 0.511 0-648 aR (6,5) 1070-60 -7-1968 0"661 0"640 aR (6,6) 1067-98 -5-7535 0"528 0"630 a aR(J",K') is a commonly used notation for the rotation-vibration double-inversion transitions where a and s indicate the parity of the total eigenfunction of the ground state with respect to the inversion of all particle about the centre of mass.…”