Based on the optical Magnus effect, the analytical expressions of the electromagnetic field that a spinning dielectric sphere illuminated by polarized plane waves are derived according to the "instantaneous rest-frame" hypothesis and Minkowski’s theory. More attention is paid to the near field. The unusual optical phenomena in mesoscale spheres without material and illumination wave asymmetry that are the photonic hook (PH) and whispering gallery mode (WGM)-like resonance caused by rotation are explored. The impact of resonance scattering on PHs is further analyzed under this framework. The influence of non-reciprocal rotating dimensionless parameter γ on PH and resonance is emphasized. The results in this paper have extensive application prospects in mesotronics, particle manipulation, resonator design, mechatronics, and planetary exploration.