The influence of the ion implantation process on the charge state of dilute (57)Fe impurities implanted as radioactive (57)Mn in ZnO is investigated by (57)Fe emission Mössbauer spectroscopy. One sample is additionally implanted with stable (23)Na impurities. Both Fe(2+) and Fe(3+) charge states are observed, and the Fe(3+)/Fe(2+) ratio is found to increase with the fluence of both (57)Mn/(57)Fe and (23)Na ions, demonstrating that the build-up of Fe(3+) is not related to the chemical nature of the implanted ions. The results are interpreted in terms of radiation damage induced changes of the Fermi level, and illustrate that the Fe(3+)/Fe(2+) ratio can be adjusted by ion implantation. The spin-lattice relaxation time for Fe(3+) in ZnO is found to be independent of the implantation fluence, and is evidently an intrinsic property of the system.