Abstract. The purpose of the present project was to study the interference of magnetic nanoparticles with drug molecules -rifampicin, used in lung infectious disease and respectively, sodium diclofenac, an antiinflammatory steroid. The controlled magnetic contamination was accomplished using colloidal nanoparticles supplied from diluted magnetic fluids. Various concentrations of diluted aqueous magnetic fluids, based on magnetite cores coated with citric acid and respectively sodium oleate, were tested. The experiment was focused on the capacity of the magnetic nanoparticles to form reversible complexes with the drug molecules, as well as on the monitoring of the nanoparticle-drug complex dynamics, under the action of external magnetic field. The level of released rifampicin ranged between 4 mg/100 ml and 7 mg/100 ml for the magnetic exposure of 20 mT, while the sodium diclofenac decomplexation level was not higher than 2.5 mg/100 ml under magnetic exposure of 60 mT. The experimental arrangement was proved to be an adequate model for the dynamical study of magnetite reversible complexation with drug molecules, evidencing certain specific values of drug concentration and magnetic field induction that favour such interactions.