Lightweight automobile body structure, made of aluminum, can extend the endurance mileage of electric automobile. However, the mechanisms for the application of aluminum in automobile body structure are not clear until now. The main contribution of this work is to propose a method of equivalent substitution criteria of aluminum for steel. This method researches small deformation and large deformation under bending mode. First, formulations of cross-sectional properties, including open, single-cell, double-cell, three-cell, and four-cell sections, are derived, and equivalent substitution criteria in the case of small deformation, which include equal stiffness design and equal strength design, are initially proposed. Second, in the case of large deformation, the steel circular tube and channel tube are substituted by aluminum tube under equivalent stiffness. The bending resistance of five types of tubes, including rectangular hollow section, rectangular hollow section with double-cell, rectangular hollow section with triple-cell, mild steel, and high-strength steel tube, are, respectively, compared considering crashworthiness under equal mass. Third, the side frame and chassis frame examples verify the effectiveness of the proposed method, which is universal and can also be applied in aerospace structures.