To prepare garnet (Bi : YIG) composite films with Au particles, we used a repetitive formation method to increase the number density of particles. On increasing the number of repetitions, the diameter distribution of the particles changed. After five repetitions using 5 nm Au films, the diameter distribution separated into two size groups. Shift of wavelength-excited localized surface plasmon resonance is discussed relative to the diameter distribution. In the composite films, enhancement of Faraday rotation associated with surface plasmons was observed. With six repetitions, a maximum enhanced rotation of −1.2 • was obtained, which is 20 times larger than that of a single Bi : YIG film. The figures of merit for the composite films are discussed. The thickness of a Bi : YIG composite film working for enhanced Faraday rotation was examined using an ion milling method.