A one-dimensional generalized magnetothermoelastic problem of a thermoelastic rod with finite length is investigated in the context of the fractional order thermoelasticity. The rod with variable properties, which are temperature-dependent, is fixed at both ends and placed in an initial magnetic field, and the rod is subjected to a moving heat source along the axial direction. The governing equations of the problem in the fractional order thermoelasticity are formulated and solved by means of Laplace transform in tandem with its numerical inversion. The distributions of the nondimensional temperature, displacement, and stress in the rod are obtained and illustrated graphically. The effects of the temperature-dependent properties, the velocity of the moving heat source, the fractional order parameter, and so forth on the considered variables are concerned and discussed in detail, and the results show that they significantly influence the variations of the considered variables.