DC current induced magnetization reversal and magnetization oscillation was observed in 500 nm large size Co 90 Fe 10 /Cu/Ni 80 Fe 20 pillars. A perpendicular external field enhanced the coercive field separation between the reference layer (Co 90 Fe 10 ) and free layer (Ni 80 Fe 20 ) in the pseudo spin valve, allowing a large window of external magnetic field for exploring the free-layer reversal. The magnetization precession was manifested in terms of the multiple peaks on the differential resistance curves. Depending on the bias current and applied field, the regions of magnetic switching and magnetization precession on a dynamical stability diagram has been discussed in details. Micromagnetic simulations are shown to be in good agreement with experimental results and provide insight for synchronization of inhomogenieties in large sized device. The ability to manipulate spin-dynamics on large size devices could prove useful for increasing the output power of the spin-transfer nano-oscillators (STNOs).Spin-polarized currents can be harnessed to manipulate magnetization and excite oscillation via the spin transfer torque (STT) effect, and are utilized in the application of MRAM [1,2] and spin-transfer nano-oscillators (STNOs) [3,4] . STNOs have the advantages that their frequencies are highly tunable by current and magnetic field over a range from 2 a few GHz to 40 GHz. [3,5] Furthermore, the nanometer sized devices are among the smallest microwave oscillators yet developed [6] and their compatibility with standard silicon processing opens the possibility for on-chip applications. [7,8] However, the bottlenecks for the widespread application of STNOs lies in the enhancement of the output power above the current limit of ~ 0.5µW. [9] It has been suggested that two nano-contact STNOs in close proximity could mutually phase-lock and increase the output power; however phase-locking of more than two STNOs remains technologically challenge. [10][11][12][13][14] Instead of putting an array of STNOs nano-magnets together, we propose to make use of larger sized magnets in the hope that synchronization of multiple domains could lead to higher output power, and firstly we demonstrated that spin-transfer torque can be used to efficiently induce magnetization switching and oscillation in 500 nm large size devices. For large size device, our simulation results have shown that the non-uniform oscillations tend to synchronize with each other and generate coherent oscillation. In addition, large sized nano-magnets can be fabricated more cost-effectively through photolithography rather than using electron beam lithography.
3The magnetic multilayer was synthesized by sputtering in a Biased Target Ion Beam Deposition system (BTIBD). The deposition details can be found elsewhere. [15] The complete structure of the multilayer is SiO 2 (substrate)/20nm Ru/2.2nm Co 90 Fe 10 (reference layer)/5nm Cu/6.5nm Ni 80 Fe 20 (free layer)/5nm Ru/Ti 5nm/Au 25nm. A magnetoresistance (MR) of ~1.2% was measured in the pseudo spin-valve continuous f...