In this paper, the steady boundary layer flow of a non-Newtonian fluid over a nonlinear stretching sheet is investigated. The Sisko fluid model, which is combination of power-law and Newtonian fluids in which the fluid may exhibit shear thinning/thickening behaviors, is considered. The boundary layer equations are derived for the two-dimensional flow of an incompressible Sisko fluid. Similarity transformations are used to reduce the governing nonlinear equations and then solved analytically using the homotopy analysis method. In addition, closed form exact analytical solutions are provided for n = 0 and n = 1. Effects of the pertinent parameters on the boundary layer flow are shown and solutions are contrasted with the power-law fluid solutions. Mathematics Subject Classification (2010): 76A05, 76D10, 74H10.