2014
DOI: 10.1088/0953-8984/26/28/325301
|View full text |Cite
|
Sign up to set email alerts
|

Magnetoresistance anomalies resulting from Stark resonances in semiconductor nanowires with a constriction

Abstract: Magnetotransport properties of a semiconductor nanowire with a constriction have been studied within the Landauer-Büttiker formalism in the presence of the axially oriented magnetic field at low temperatures. The one-electron quantum states in the nanowire have been calculated within the adiabatic approximation which takes into account the three-dimensional structure of the nanowire and allows us to study the effect of the transverse quantum states on the electronic current. The calculated current-voltage char… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
7
0

Year Published

2016
2016
2022
2022

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 9 publications
(7 citation statements)
references
References 46 publications
0
7
0
Order By: Relevance
“…with the Dirichlet boundary conditions. Then, we use the adiabatic approximation [4] to solve the 3D Schrödinger equation * corresponding author; e-mail: bjs@agh.edu.pl…”
Section: Model and Calculationsmentioning
confidence: 99%
“…with the Dirichlet boundary conditions. Then, we use the adiabatic approximation [4] to solve the 3D Schrödinger equation * corresponding author; e-mail: bjs@agh.edu.pl…”
Section: Model and Calculationsmentioning
confidence: 99%
“…By using this method we can investigate the dynamical properties of the considered state in a dispersive medium with an internal perturbation which breaks its homogeneity. This perturbation is taken in the form of a single obstacle which can mimic a structural defect or a dopant in a nanowire 77 . We model this obstacle as a barrier in the form of the repulsive Gaussian potential, where is the strength of the potential located at the position and w determines the width of the barrier.…”
Section: Resultsmentioning
confidence: 99%
“…The adiabatic approximation [5] is used to solve the 3D Schrödinger-Poisson problem. It is defined by the system of equations, which consists of the Schrödinger equation…”
Section: Methods Of Calculationsmentioning
confidence: 99%