Advancements in low‐dimensional functional device technology heavily rely on the discovery of suitable materials which have interesting physical properties as well as can be exfoliated down to the 2D limit. Exfoliable high‐mobility magnets are one such class of materials that, not due to lack of effort, has been limited to only a handful of options. So far, most of the attention has been focused on the van der Waals (vdW) systems. However, even within the non‐vdW, layered materials, it is possible to find all these desirable features. Using chemical reasoning, it is found that NdSb2 is an ideal example. Even with a relatively small interlayer distance, this material can be exfoliated down to few layers. NdSb2 has an antiferromagnetic ground state with a quasi 2D spin arrangement. The bulk crystals show a very large, non‐saturating magnetoresistance along with highly anisotropic electronic transport properties. It is confirmed that this anisotropy originates from the 2D Fermi pockets which also imply a rather quasi 2D confinement of the charge carrier density. Both electron and hole‐type carriers show very high mobilities. The possible non‐collinear spin arrangement also results in an anomalous Hall effect.