We show that the direction of coherent electron transport across a cyclic system of quantum dots or a cyclic molecule can be modulated by an external magnetic field if the cycle has an odd number of hopping sites, but the transport becomes completely symmetric if the number is even. These contrasting behaviors, which remain in the case of interacting electrons, are a consequence of the absence or presence of alternance symmetry in the system. These findings are relevant for the design of nanocircuits based on coupled quantum dots or molecular junctions.