The paper covers main recent results in the active magnetic attitude control of satellites. Three main implementation situations are outlined. Angular velocity damping opens the problem as the auxiliary control task. Next, implementation with other actuators and passive stabilization concepts is considered. Magnetic attitude control is restricted in the direction: control torque cannot be applied along the magnetic induction vector. Other actuators or environmental properties may enhance the control, providing control authority along the restricted axis. This comes at the cost of restricted attitude motion. Passive gravitational stabilization, spin stabilization and dual spin satellites present main cases. The satellite may acquire the local vertical and one axis inertial attitude that represent important cases. The most challenging and practically promising situation is the fully magnetic three axis attitude control. This reduces the hardware requirements for the attitude control system to the minimum. However, this also comes at the cost of a restriction on the control torque vector and low attitude accuracy and time-response. Feedback law with proper control gains tuning, sliding control and optimization techniques are considered for this problem.