A detailed quantitative calcareous nannofossil analysis has been performed on 138 samples from the astronomically dated Monte del Casino section with the aim to identify and precisely date the most important calcareous nannofossil events across the Tortonian=Messinian boundary in the Mediterranean, and to unravel paleoceanographic conditions at times of sapropel formation during the Late Miocene. From the biostratigraphic perspective, the genus Amaurolithus provides three successive first occurrences (FOs): A. primus, A. cf. amplificus and A. delicatus, dated at 7.446, 7.434 and 7.226 Ma, respectively. Other bioevents include the base and top of the 'small reticulofenestrids' Acme, dated at 7.644 and 6.697 Ma, and the FO, FCO and LO of R. rotaria, dated at 7.405, 7.226 and 6.771 Ma. These events appear to be useful in improving biostratigraphic resolution in the Tortonian-Messinian boundary interval, at least for the Mediterranean. Quantitative analysis revealed changes in the calcareous nannofossil assemblage associated with the sapropels. The observed fluctuations suggest a single mechanism for sapropel formation in the Mediterranean during the late Neogene. Sapropels are characterized by a decrease in the total number of coccoliths, interpreted mainly as a reduction in calcareous nannofossil production due to increased siliceous plankton production during spring blooms; and an increase in reworked specimens, interpreted to reflect enhanced continental input via river run-off. An increase in abundance of the genus Rhabdosphaera can be explained by opportunistic behavior at the end of the spring bloom when nutrient levels start to become impoverished. As far as sea surface water temperature indicators are concerned, warm water D. pentaradiatus shows positive fluctuations in sapropels while cooler water D. intercalaris and C. pelagicus show negative fluctuations.