In this paper, the relationship between giant caloric phenomena and itinerant-electron magnetism is examined in order to construct of a newly proposed concept "Entropics", which is a fusion of science and technology with the objective of solving and controlling entropic phenomena. An anomalous hall resistivity is present in the paramagnetic state of the La(Fe 0.88 Si 0.12 ) 13 magnetocaloric compound. Further, its coefficient exhibits a Curie-Weiss type temperature dependence, indicating the existence of disordered local moment, even though the Rhodes-Wohlfarth (RW) ratio reveals that the magnetic feature in the system is an itinerant-electron type. In addition, the correlation between the magnitude of the transition entropy change of the itinerant-electron metamagnetic transition and the RW ratio was observed. In the Mn 3 GaN barocaloric compound, the transition entropy of the first-order antiferromagnetic-paramagnetic phase transition marginally depends on the external pressure, in contrast to the data for Gd 5 Ge 2 Si 2 . The origin of this tendency is phase stability against the pressure, as opposed to large volume change at the transition temperature, which results in an enhancement of the barocaloric effect. The influence of topological frustration is also distinguished by comparing it with that of other Mn-based antiperovskite compounds.