Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Motivated by recent advancements in theoretical and experimental studies of the high-energy excitations on an antiferromagnetic trimer chain, we numerically investigate the quantum phase transition and composite dynamics in this system by applying a magnetic field. The numerical methods we used include the exact diagonalization, density matrix renormalization group, time-dependent variational principle, and cluster perturbation theory. From calculating the entanglement entropy, we have revealed the phase diagram which includes the XY-I, 1/3 magnetization plateau, XY-II, and ferromagnetic phases. Both the critical XY-I and XY-II phases are characterized by the conformal field theory with a central charge c ≃ 1. By analyzing the dynamic spin structure factor, we elucidate the distinct features of spin dynamics across different phases. In the regime with weak intertrimer interaction, we identify the intermediate-energy and high-energy modes in the XY-I and 1/3 magnetization plateau phases as internal trimer excitations, corresponding to the propagating of doublons and quartons, respectively. Notably, applying a magnetic field splits the high-energy spectrum into two branches, labeled as the upper quarton and lower quarton. Furthermore, we explore the spin dynamics of a frustrated trimerized model closely related to the quantum magnet Na2Cu3Ge4O12. In the end, we extend our discuss on the possibility of the quarton Bose-Einstein condensation in the trimer systems. Our results are expected to be further verified through the inelastic neutron scattering and resonant inelastic X-ray scattering, and also provide valuable insights for exploring high-energy exotic excitations.
Motivated by recent advancements in theoretical and experimental studies of the high-energy excitations on an antiferromagnetic trimer chain, we numerically investigate the quantum phase transition and composite dynamics in this system by applying a magnetic field. The numerical methods we used include the exact diagonalization, density matrix renormalization group, time-dependent variational principle, and cluster perturbation theory. From calculating the entanglement entropy, we have revealed the phase diagram which includes the XY-I, 1/3 magnetization plateau, XY-II, and ferromagnetic phases. Both the critical XY-I and XY-II phases are characterized by the conformal field theory with a central charge c ≃ 1. By analyzing the dynamic spin structure factor, we elucidate the distinct features of spin dynamics across different phases. In the regime with weak intertrimer interaction, we identify the intermediate-energy and high-energy modes in the XY-I and 1/3 magnetization plateau phases as internal trimer excitations, corresponding to the propagating of doublons and quartons, respectively. Notably, applying a magnetic field splits the high-energy spectrum into two branches, labeled as the upper quarton and lower quarton. Furthermore, we explore the spin dynamics of a frustrated trimerized model closely related to the quantum magnet Na2Cu3Ge4O12. In the end, we extend our discuss on the possibility of the quarton Bose-Einstein condensation in the trimer systems. Our results are expected to be further verified through the inelastic neutron scattering and resonant inelastic X-ray scattering, and also provide valuable insights for exploring high-energy exotic excitations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.