When irradiated via high frequency circularly polarized light, the stroboscopic dynamics in a Heisenberg spin system on a honeycomb lattice develops a next nearest neighbor (NNN) Dzyaloshinskii-Moriya (DM) type term 37 , making it a magnonic Floquet topological insulator. We investigate the entanglement generation and its evolution on such systems -particularly an irradiated ferromagnetic XXZ spin-1 2 model in a honeycomb lattice as the system parameters are optically tuned. In the high frequency limit, we compute the lowest quasi-energy state entanglement in terms of the concurrence between nearest neighbor (NN) and NNN pair of spins and witness the entanglement transitions occurring there. For the easy axis scenario, the unirradiated system forms a product state but entanglement grows between the NNN spin pairs beyond some cut-off DM strength. Contrarily in easy planar case, NN and NNN spins remain already entangled in the unirradiated limit. It then goes through an entanglement transition which causes decrease (increase) of the NN (NNN) concurrences down to zero (up to some higher value) at some critical finite DM interaction strength. For a high frequency of irradiation and a suitably chosen anisotropy parameter, we can vary the field strength to witness sudden death and revival of entanglement in the Floquet system. Both exact diagonalization and modified Lanczos techniques are used to obtain the results upto 24 site lattice. We also calculate the thermal entanglement and obtain estimates for the threshold temperatures below which non-zero concurrence can be expected in the system. arXiv:1806.02125v3 [cond-mat.str-el]