2018
DOI: 10.3917/jgem.174.0197
|View full text |Cite
|
Sign up to set email alerts
|

Maillage territorial des établissements de santé : apport des modèles issus de la théorie des graphes

Abstract: La recomposition hospitalière observable depuis plus de 20 ans en France résulte de décisions prises dans le cadre des politiques de planification et des stratégies adoptées par les établissements. Au-delà de ses conséquences, comment dans un premier temps rendre compte du maillage territorial des établissements de santé ? Pour identifier les facteurs caractérisant la topologie du maillage, les statistiques de test conventionnelles sont inadaptées. Aussi nous proposons dans cet article méthodologique, d’étudie… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2019
2019
2021
2021

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 19 publications
0
1
0
Order By: Relevance
“…Finally, exponential random graph models (ERGM) were performed to identify determinants of network topology. Although these confirmed the influence of geographical proximity and legal status in the relationships between hospitals, regional specificities were also identified, which were probably linked to population characteristics and to the historical structuration of health services in each region (Le Meur et al, 2017).…”
Section: Contents Of the Workhopmentioning
confidence: 83%
“…Finally, exponential random graph models (ERGM) were performed to identify determinants of network topology. Although these confirmed the influence of geographical proximity and legal status in the relationships between hospitals, regional specificities were also identified, which were probably linked to population characteristics and to the historical structuration of health services in each region (Le Meur et al, 2017).…”
Section: Contents Of the Workhopmentioning
confidence: 83%