These three papers cover the overall methodology for the identification and localization of faults that occur in main transmission and distribution lines when broadband over power lines (BPL) networks are deployed across the transmission and distribution power grids, respectively. In fact, this fault case is the only one that cannot be handled by the combined operation of Topology Identification Methodology (TIM) and Instability Identification Methodology (FIIM). After the phase of identification of main distribution line faults, which is presented in this paper, the main line fault localization methodology (MLFLM) is applied in order to localize the faults in overhead medium-voltage BPL (OV MV BPL) networks. The main contribution of this paper, which is focused on the identification of the main distribution line faults, is the presentation of TM2 method extension through the adoption of coupling reflection coefficients. Extended TM2 method is analyzed in order to identify a main distribution line fault regardless of its nature (i.e., short-or open-circuit termination). The behavior of the extended TM2 method is assessed in terms of the main line fault nature and, then, its results are compared against the respective ones during the normal operation, which are given by the original TM2 method, when different main distribution line fault scenarios occur. Extended TM2 method acts as the introductory phase (fault identification) of MLFLM.