2022
DOI: 10.31436/iiumej.v23i1.1807
|View full text |Cite
|
Sign up to set email alerts
|

Maintain Agent Consistency in Surakarta Chess Using Dueling Deep Network With Increasing Batch

Abstract: Deep reinforcement learning usage in creating intelligent agents for various tasks has shown outstanding performance, particularly the Q-Learning algorithm. Deep Q-Network (DQN) is a reinforcement learning algorithm that combines the Q-Learning algorithm and deep neural networks as an approximator function. In the single-agent environment, the DQN model successfully surpasses human ability several times over. Still, when there are other agents in the environment, DQN may experience decreased performance. This … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 21 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?