Phosphate (Pi) availability is a significant limiting factor for plant growth and productivity in both natural and agricultural systems. To cope with such limiting conditions, plants have evolved a myriad of developmental and biochemical strategies to enhance the efficiency of Pi acquisition and assimilation to avoid nutrient starvation. In the past decade, these responses have been studied in detail at the level of gene expression; however, the possible epigenetic components modulating plant Pi starvation responses have not been thoroughly investigated. Here, we report that an extensive remodeling of global DNA methylation occurs in Arabidopsis plants exposed to low Pi availability, and in many instances, this effect is related to changes in gene expression. Modifications in methylation patterns within genic regions were often associated with transcriptional activation or repression, revealing the important role of dynamic methylation changes in modulating the expression of genes in response to Pi starvation. Moreover, Arabidopsis mutants affected in DNA methylation showed that changes in DNA methylation patterns are required for the accurate regulation of a number of Pi-starvation-responsive genes and that DNA methylation is necessary to establish proper morphological and physiological phosphate starvation responses.phosphate | epigenetics | abiotic stress | DNA methylation | methylome D uring evolution, plants have acquired a series of adaptive strategies that allow them to survive and complete their life cycles under adverse environmental conditions. Consequently, plants have evolved a myriad of physiological, cellular, and molecular mechanisms to cope with challenging environments. Plant responses to environmental stress include modifications in postembryonic development and metabolic reprogramming, which are highly dependent on the regulation of gene expression. It is well documented that gene regulation at the transcriptional and posttranscriptional levels plays an important role in plant stress responses; however, more recent evidence suggests that epigenetic mechanisms also play an important role in reprogramming gene expression in response to environmental cues and that epigenetic marks can serve as a priming mechanism to prepare future generations to better withstand biotic and abiotic stresses (1-3). These epigenetic marks include, but are not restricted to, posttranslational histone modifications and DNA methylation, a mechanism by which cytosine DNA methylation regulates the silencing and control of transposable elements (TEs) and repetitive sequences, genomic imprinting, and gene silencing. In plants, this DNA methylation modification is applied in three different sequence contexts (CG, CHG, and CHH, where H = A, C, or T), and the involvement of different pathways is necessary for the establishment, maintenance, and modification of DNA methylation patterns in these contexts (4, 5). These epigenetic processes can interact to orchestrate new heterochromatin states that modify gene expression [for re...