Background: Multiple C2 domains and transmembrane region proteins (MCTPs) may act as transport mediators of other regulators. Although increased number of MCTPs in higher plants implies their diverse and specific functions in plant growth and development, only a few plant MCTPs have been studied and no study on the MCTPs in cotton has been reported. Results: In this study, we identified 31 MCTPs in G. hirsutum, which were classified into five subfamilies according to the phylogenetic analysis. GhMCTPs from subfamily V exhibited isoelectric points (pIs) less than 7, whereas GhMCTPs from subfamily I, II, III and IV exhibited pIs more than 7.5, implying their distinct biological functions. In addition, GhMCTPs within subfamily III, IV and V exhibited more diverse physicochemical properties, domain architectures and expression patterns than GhMCTPs within subfamily I and II, suggesting that GhMCTPs within subfamily III, IV and V diverged to perform more diverse and specific functions. Analyses of conserved motifs and pIs indicated that the N-terminus was more divergent than the C-terminus and GhMCTPs' functional divergence might be mainly contributed by the N-terminus. Furthermore, yeast two-hybrid assay indicated that the N-terminus was responsible to interact with target proteins. Phylogenetic analysis classified multiple N-terminal C2 domains into four subclades, suggesting that these C2 domains performed different molecular functions in mediating the transport of target proteins. Conclusions: Our systematic characterization of MCTPs in G. hirsutum will provide helpful information to further research GhMCTPs' molecular roles in mediating other regulators' transport to coordinate growth and development of various cotton tissues.