Maize Kernel Broken Rate Prediction Using Machine Vision and Machine Learning Algorithms
Chenlong Fan,
Wenjing Wang,
Tao Cui
et al.
Abstract:Rapid online detection of broken rate can effectively guide maize harvest with minimal damage to prevent kernel fungal damage. The broken rate prediction model based on machine vision and machine learning algorithms is proposed in this manuscript. A new dataset of high moisture content maize kernel phenotypic features was constructed by extracting seven features (geometric and shape features). Then, the regression model of the kernel (broken and unbroken) weight prediction and the classification model of kerne… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.