Purpose Returning decomposed straw to crop fields could address many agricultural shortcomings. In this study, the soil microbial community, soil nutrients, soil enzyme activities and maize yield were investigated after returning decomposed straw to the field. Methods To investigate the effects of returning decomposed straw to field on soil microorganisms and maize growth, field experiments were carried out to measure soil nutrient content, soil enzyme activity and maize yield, and the soil microbial community structure was measured by 16SRNA and ITS amplicon sequencing technology.Results The results showed that the contents of total nitrogen (TN), nitrate nitrogen (NN), total phosphorus (TP), available phosphorus (AP) and pH were significantly increased, and the contents of ammonium nitrogen (AN) and available kalium were decreased in both the rotary tillage (SR) and mulching (SM) treatments. The bacterial and fungal community structures in bulk and rhizosphere soils were clearly changed under SR and SM. The relative abundances of bacterial genera related to soil denitrification, such as Skermanella, Blastococcus, Geodermatophilus and Asanoa, were significantly increased. The relative abundances of Conexibacter, Streptomyces and Trichoderma, which bacteria that has shown to inhibit plant diseases, were increased. In addition, the relative abundances of growth-promoting bacteria, such as Arthrobacter and Mesorhizobium, were also significantly increased. Moreover, adding decomposed straw back to the field promoted the absorption of nutrients by maize, and resulted in higher yield of maize.Conclusions Our findings suggest positive responses of soil microbial community structure and maize growth to decomposition straw returning.