The Upper Ordovician Wufeng Formation and Lower Silurian Longmaxi Formation black shales are the critical targets for shale gas exploration in the Sichuan Basin of South China. The enrichment of organic matter (OM) in shale is the basis for the generation of large-scale shale gas; however, its controlling factors in Wufeng-Longmaxi shales are still under debate, and few studies have focused on the edge of the Sichuan Basin. Based on the mineral composition, total organic carbon (TOC), and systematic inorganic geochemistry analysis of 72 core samples from Wufeng and Longmaxi formations in Well Xike 1, southeastern Sichuan Basin, the sedimentary conditions (palaeoclimate, palaeoredox, and palaeoproductivity) were reconstructed, and the controlling factors of OM enrichment were identified. The mineral compositions are dominated by quartz, clay minerals, calcite, and feldspar, associated with minor dolomite, pyrite, and anhydrite. The TOC contents (0.31%-6.84%, avg. 2.22%) show an upward decreasing trend from the Wufeng Formation to Longmaxi Formation. The chemical index of alteration (CIA) ranges from 65 to 71 (avg. 69), indicating warm and humid climate with moderate weathering. The diagrams of Al2O3-TiO2, TiO2-Zr, Zr/Sc-Th/Sc, La/Th-Hf, and La-Th-Sc jointly indicate the contribution from felsic and intermediate rock weathering. The P/Al, Cu/Al, and Ni/Al ratios suggest that marine paleoproductivity was relatively high in the Wufeng Formation and relatively low to moderate in the Longmaxi Formation. The V/Cr, V/Sc, U/Th, MoEF/UEF, and Corg/P ratios indicate that the bottom water was anoxic during the Wufeng Formation deposition and then fluctuating dysoxic and/or oxic in the overlying Longmaxi Formation. The TOC content was positively correlated with productivity proxies (P/Al, Cu/Al, and Ni/Al) as well as redox proxies (U/Th, V/Cr, MoEF/UEF, and Corg/P), indicating that the OM accumulation in Wufeng-Longmaxi shales is mainly controlled by high productivity and anoxic bottom water conditions.