Substituted 2,4- and 4,6-dihydroxyisophthalaldehydes were condensed with optically pure and racemic trans-1,2-diaminocyclohexane to form resorcinarene-like polyimine macrocycles (resorcinsalens), the structure and stoichiometry of which were controlled by the choice of the reaction medium. Particularly, the cyclocondensation reactions were driven by the solubility, tautomerization, or by social self-sorting. The resorcinsalens crystallized as inclusion compounds, in which the guest molecules were situated either in channels or in voids. In the highly hydrated crystals of one of the [2+2] macrocycles and chloroform-solvated crystals of a [4+4] product the channels were interconnected, as in zeolites, enabling possible migration of loosely bound solvent molecules in three dimensions. The association mode depended on the structural modification of the host molecule and the type of included solvent molecule(s).