Abstract:For interpreting the behavior of a probabilistic model, it is useful to measure a model's calibration-the extent to which the model produces reliable confidence scores. We address the open problem of calibration for tagging models with sparse tagsets, and recommend strategies to measure and reduce calibration error (CE) in such models. We show that several post-hoc recalibration techniques all reduce calibration error across the marginal distribution for two existing sequence taggers. Moreover, we propose tag … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.