Making Phase-Picking Neural Networks More Consistent and Interpretable
Yongsoo Park,
Brent G. Delbridge,
David R. Shelly
Abstract:Improving the interpretability of phase-picking neural networks remains an important task to facilitate their deployment to routine, real-time seismic monitoring. The popular phase-picking neural networks published in the literature lack interpretability because their output prediction scores do not necessarily correspond with the reliability of phase picks and can even be highly inconsistent depending on how we window the waveform data. Here, we show that systematically shifting the waveforms during training … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.