Background-Even today, infective endocarditis (IE) remains a severe and potentially fatal disease demanding sophisticated diagnostic strategies for detection of the causative microorganisms. Despite the use of appropriate laboratory techniques, classic microbiological diagnostics are characterized by a high rate of negative results. Methods and Results-Broad-range polymerase chain reaction (PCR) targeting bacterial and fungal rDNA followed by direct sequencing was applied to excised heart valves (nϭ52) collected from 51 patients with suspected infectious endocarditis and from 16 patients without any signs of IE during an 18-month period. The sensitivity, specificity, and the positive and negative predictive values for the bacterial broad-range PCR were 41.2%, 100.0%, 100.0%, and 34.8%, respectively, compared with 7.8%, 93.7%, 80.0%, and 24.2% for culture and 11.8%, 100.0%, 100.0%, and 26.2% for Gram staining. Without exception, database analyses allowed identification up to the (sub)species level comprising streptococcal (nϭ13), staphylococcal (nϭ4), enterococcal (nϭ2), and other signature sequences such as Bartonella quintana and Nocardia paucivorans. Fungal ribosomal sequences were not amplified. All valve tissues of the reference group were negative for both PCR and conventional methods, except one sample that was contaminated by molds. Conclusions-Culture-independent molecular methods substantially improve the diagnostic outcome of microbiological examination of excised heart valves. Importantly, this was true not only for fastidious, slow-growing, and/or nonculturable microorganisms but also for easy-to-culture pathogens such as streptococci and staphylococci. Both patient management and empiric antibiotic therapy of IE are likely to benefit from improved knowledge of the spectrum of pathogens now causing IE.