Septic cardiomyopathy is a well-described complication of severe sepsis and septic shock. However, the interplay of its underlying mechanisms remains enigmatic. Consequently, we constantly add to our pathophysiological understanding of septic cardiomyopathy. Various cardiosuppressive mediators have been discovered, as have multiple molecular mechanisms (alterations of myocardial calcium homeostasis, mitochondrial dysfunction, and myocardial apoptosis) that may be involved in myocardial dysfunction during sepsis. Finally, the detrimental roles of nitric oxide and peroxynitrite have been unraveled. Here, we describe our present understanding of systemic, supracellular, and cellular molecular mechanisms involved in sepsis-induced myocardial suppression.
SYSTEMIC, SUPRACELLULAR MECHANISMS
Decreased Coronary Blood FlowOne of the first suggestions was that reduced coronary perfusion in the septic heart might be responsible for a setting of global cardiac ischemia. This hypothesis was soon abandoned after direct measurements of coronary blood flow were obtained, showing no reduced, but rather increased, coronary blood flow (22,23). In later studies, however, increased levels of plasma troponin were observed and correlated with the severity of myocardial depression during sepsis and septic shock (24). Myocardial necrosis could not be observed in patients who died from septic shock (3,25), however, raising the question whether increases in troponin were due to cytokine-induced, transient increases in cardiomyocyte membrane permeability to troponin. To date, this remains to be determined.
Alterations of MicrovasculatureThere is now increasing evidence that sepsis and septic shock leads to changes of the myocardial microvasculature. In a canine model of endotoxemia, maldistribution of heterogeneous coronary blood flow has been reported (26). These findings might be caused by endothelial swelling and nonocclusive intravascular fibrin deposits in the microvasculature (27). In parallel, activated cardiomyocytes from septic mice promoted transendothelial migration and activation of circulating neutrophils into the interstitium (28) where these cells may augment the sepsis-induced intracardial inflammation, and contribute to an increased vascular leakage, which has been described to also impair cardiac function and compliance secondary to myocardial edema (29,30). Yet, studies have failed to confirm cellular hypoxia in a murine sepsis model (31).
Cardiosuppressing Circulating Proinflammatory MediatorsAnother hypothesis suggested circulating myocardium-depressing factors as the cause of septic cardiomyopathy (32). Parrillo et al. (33) confirmed the existence of a cardiodepressant substance by incubating isolated rat cardiomyocytes with serum obtained from septic shock patients, leading to decreased amplitude and velocity of cardiomyocyte shortening. Levels of cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and the complement anaphylatoxin, C5a, are known to be elevated in the circulation during sepsis an...