2017
DOI: 10.1112/jlms.12032
|View full text |Cite
|
Sign up to set email alerts
|

Malgrange division by quasianalytic functions

Abstract: Quasianalytic classes are classes of infinitely differentiable functions that satisfy the analytic continuation property enjoyed by analytic functions. Two general examples are quasianalytic Denjoy-Carleman classes (of origin in the analysis of linear partial differential equations) and the class of infinitely differentiable functions that are definable in a polynomially bounded o-minimal structure (of origin in model theory). We prove a generalization to quasianalytic functions of Malgrange's celebrated theor… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2021
2021
2022
2022

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 20 publications
0
0
0
Order By: Relevance