2021
DOI: 10.1016/j.cosrev.2021.100373
|View full text |Cite
|
Sign up to set email alerts
|

Malicious application detection in android — A systematic literature review

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
15
0
13

Year Published

2021
2021
2024
2024

Publication Types

Select...
5
3
1

Relationship

0
9

Authors

Journals

citations
Cited by 59 publications
(28 citation statements)
references
References 163 publications
0
15
0
13
Order By: Relevance
“…Previous reviews in [9,13,17,[34][35][36][37] discussed various ML-based Android malware detection techniques and ways to improve Android security.…”
Section: Related Workmentioning
confidence: 99%
See 1 more Smart Citation
“…Previous reviews in [9,13,17,[34][35][36][37] discussed various ML-based Android malware detection techniques and ways to improve Android security.…”
Section: Related Workmentioning
confidence: 99%
“…The novel ML/DL and other models which can be used to detect Android malware were also not in the focus of this review. The review in [36] provides a good analysis of static, dynamic, and hybrid detection techniques used in the existing research studies for Android malware detection. Along with that possibility of using machine learning models, several deep learning models are also discussed.…”
Section: Related Workmentioning
confidence: 99%
“…A importância das características para o processo de detecc ¸ão de malwares é facilmente compreendida quando se empregam soluc ¸ões baseadas no aprendizado de máquina [Wang et al, 2019, Sharma andRattan, 2021]. Isto porque, para o correto funcionamento, essas soluc ¸ões (e seus modelos) dependem de conjuntos de dados (datasets) corretos e atualizados, requerendo assim a extrac ¸ão detalhada de características dos aplicativos [Dharmalingam and Palanisamy, 2021, Alazab et al, 2020, Zhang et al, 2020.…”
Section: Introduc ¸ãOunclassified
“…Na prática, muitos datasets atuais são construídos a partir de datasets mais antigos [Sharma and Rattan, 2021], o que também representa um problema. Por exemplo, o dataset Drebin-215 (disponibilizado em 2018) é constituído, na verdade, por um subconjunto de dados do dataset Drebin, datado de 2012.…”
Section: Introduc ¸ãOunclassified