2017 2nd IEEE International Conference on Recent Trends in Electronics, Information &Amp; Communication Technology (RTEICT) 2017
DOI: 10.1109/rteict.2017.8256834
|View full text |Cite
|
Sign up to set email alerts
|

Malicious web content detection using machine leaning

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
14
0
2

Year Published

2019
2019
2024
2024

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 18 publications
(16 citation statements)
references
References 15 publications
0
14
0
2
Order By: Relevance
“…Ankit and Gupta extracted features from URLs and source code from users' side and adopted Random Forest as the classifier [18]. Desai et al selected 22 features such as URL length and Google Index and adopted SVM, K Nearest-Neighbor (KNN) and Random Forest as the classifier [16]. Gupta and Sachdeva used SVM to detect malicious URLs in Facebook [17].…”
Section: B Classical Machine Learning Techniquesmentioning
confidence: 99%
“…Ankit and Gupta extracted features from URLs and source code from users' side and adopted Random Forest as the classifier [18]. Desai et al selected 22 features such as URL length and Google Index and adopted SVM, K Nearest-Neighbor (KNN) and Random Forest as the classifier [16]. Gupta and Sachdeva used SVM to detect malicious URLs in Facebook [17].…”
Section: B Classical Machine Learning Techniquesmentioning
confidence: 99%
“…Authors [11] in this paper created an extension to Google Chrome to detect phishing websites content with the help of machine learning algorithms. Dataset UCI-Machine Learning Repository used and 22 features were extracted for this dataset.…”
Section: Literary Reviewmentioning
confidence: 99%
“…Algorithms kNN, SVM and Random Forest were chosen for precision, recall,f1-score and accuracy comparison. Random Forest obtained a best score and HTML,JavaScript, CSS [11] used for implementing chrome extension along with python. This extension is having a drawback of declared malicious site list which is increasing every day.…”
Section: Literary Reviewmentioning
confidence: 99%
“…Outras abordagens comumente utilizadas são baseadas em processamento de linguagem natural [Sahingoz et al 2019], parâmetros do domínio em questão [Desai et al 2017] e análise do conteúdo da página [Jain and Gupta 2018]. Vale notar que essas técnicas podem não alcançar uma boa generalização para detecção de novos endereços na Internet.…”
Section: Figura 1 Sequência De Passos Para Um Ataque De Phishing Bem Sucedidounclassified
“…Já a proposta de [Desai et al 2017] apresenta uma extensão de navegador para detecção de phishing utilizando machine learning. Os autores utilizaram um dataset público da Universidade da Califórnia em Irvine (UCI) 4 composto por 11.055 URLs classificadas como phishing ou não, onde cada endereço tem 30 parâmetros para efeito de classificação.…”
Section: Trabalhos Relacionadosunclassified