Background:The breast imaging reporting and data system (BI-RADS) lexicon provides a standardized terminology for describing leision characteristics but does not provide defined rules for converting specific imaging features into diagnostic categories. The inter-reader agreement of the BI-RADS is moderate. In this study, we explored the use of a simplified protocol and scoring system for BI-RADS categorization which integrates the morphologic features (MF), kinetic time-intensity curve (TIC), and apparent diffusion coefficient (ADC) values with equal weights, with a view to providing a convenient and practical method for breast magnetic resonance imaging (MRI) and improving the inter-reader agreement and diagnostic performance of BI-RADS.Methods: This cross-sectional, retrospective, single-center study included 879 patients with 898 histopathologically verified lesions who underwent an MRI scan on a 3.0 Tesla GE Discovery 750 MRI scanner between January 1, 2017, and June 30, 2020. The BI-RADS categorization of the studied lesions was assessed according to the sum of the assigned scores (the presence of malignant MF, lower ADC, and suspicious TIC each warranted a score of +1). Total scores of +2 and +3 were classified as category 5, scores of +1 were classified as category 4, and scores of +0 but with other lesions of interest were classified as category 3. The receiver operating characteristic (ROC) curves were plotted, and the sensitivity, specificity, and accuracy of this categorization were investigated to assess its efficacy and its consistency with pathology.Results: There were 472 malignant, 104 risk, and 322 benign lesions. Our simplified scoring protocol had high diagnostic accuracy, with an area under curve (AUC) value of 0.896. In terms of the borderline effect of pathological risk and category 4 lesions, our results showed that when risk lesions were classified together with malignant ones, the AUC value improved (0.876 vs. 0.844 and 0.909 vs. 0.900). When category 4 and 5 lesions were classified as malignant, the specificity, accuracy, and AUC value decreased (82.3% vs. 93.2%, 89.3% vs. 90.2%, and 0.876 vs. 0.909, respectively). Therefore, to improve the diagnostic accuracy of the protocol for BI-RADS categorization, only category 5 lesions should be considered to be malignant.
Conclusions:Our simplified scoring protocol that integrates MF, TIC, and ADC values with equal