2015 Medical Technologies National Conference (TIPTEKNO) 2015
DOI: 10.1109/tiptekno.2015.7374622
|View full text |Cite
|
Sign up to set email alerts
|

Malignant-benign classification of pulmonary nodules by bagging-decision trees

Abstract: Özetçe Günümüzde birçok klinik uygulamada, Bilgisayar Destekli Teşhis (BDT) sistemlerinin kullanımına büyük gereksinim duyulmaktadır. Bu çalışmada, pulmoner nodüllerin malign benign sınıflandırması için yeni bir Bilgisayar Destekli Teşhis (BDT) sistemi önerilmiştir. Çalışmada bagging destekli karar ağacı sınıflandırıcıları kullanılmıştır. Malign ve benign huylu nodüllerin sınıflandırması için önerilen sistemde, % 86.8 sınıflandırma doğruluğu olmak üzere benign sınıf için % 94.7 duyarlılık ve 0.950 AUROC; malig… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
3
0

Year Published

2020
2020
2023
2023

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(3 citation statements)
references
References 14 publications
0
3
0
Order By: Relevance
“…This work will explore the possibility of transillumination of multispectral Nevoscopes to distinguish and dismantle ratiometric estimates using epiluminescence imagery to separate malignant melanomas from dysplastic nevi or other conventional skin lesions [22]. The authors in [23] describe a Tactile Cyber-Physical Imaging System (TIS) for the detection of malignant tumors. In the detection, the rule of all light within reflection terminal innervation ratio (TIR) is applied.…”
Section: Literature Surveymentioning
confidence: 99%
See 1 more Smart Citation
“…This work will explore the possibility of transillumination of multispectral Nevoscopes to distinguish and dismantle ratiometric estimates using epiluminescence imagery to separate malignant melanomas from dysplastic nevi or other conventional skin lesions [22]. The authors in [23] describe a Tactile Cyber-Physical Imaging System (TIS) for the detection of malignant tumors. In the detection, the rule of all light within reflection terminal innervation ratio (TIR) is applied.…”
Section: Literature Surveymentioning
confidence: 99%
“…The fact that numerous certified sun absorbers exist increases the likelihood that the future sun will cause structural damage. Sunlight and tanning beds release UV radiation which increases the risk of melanoma and increases UV exposure in the vicinity of the equator [21][22][23][24]. A depiction of the ABCD (Asymmetry, Border, Color, and Dimension) run is as follows: start on the left side and work your way to the right: melanomas with (A) asymmetry, (B) an uneven, fatigued, or depressed edge, (C) concealment of different hues of darker, dull, or tan, and (D) an altered gauge width.…”
Section: Introductionmentioning
confidence: 99%
“…Finally, this approach uses these models to predict the data. K predicted values can be obtained from each sample, and the final result can be obtained by voting [21]. Because the weights of the base learners in this algorithm are the same, the base learner selection in this algorithm will directly affect the results of the ensemble learning method.…”
Section: Webshell Attack Detection Based On Ensemble Learningmentioning
confidence: 99%