Dysregulation of the von Hippel-Lindau/hypoxia-inducible transcription factor (HIF) signaling pathway promotes clear cell renal cell carcinoma (ccRCC) progression and metastasis. The protein kinase GAS6/AXL signaling pathway has recently been implicated as an essential mediator of metastasis and receptor tyrosine kinase crosstalk in cancer. Here we establish a molecular link between HIF stabilization and induction of AXL receptor expression in metastatic ccRCC. We found that HIF-1 and HIF-2 directly activate the expression of AXL by binding to the hypoxia-response element in the AXL proximal promoter. Importantly, genetic and therapeutic inactivation of AXL signaling in metastatic ccRCC cells reversed the invasive and metastatic phenotype in vivo. Furthermore, we define a pathway by which GAS6/AXL signaling uses lateral activation of the met proto-oncogene (MET) through SRC proto-oncogene nonreceptor tyrosine kinase to maximize cellular invasion. Clinically, AXL expression in primary tumors of ccRCC patients correlates with aggressive tumor behavior and patient lethality. These findings provide an alternative model for SRC and MET activation by growth arrest-specific 6 in ccRCC and identify AXL as a therapeutic target driving the aggressive phenotype in renal clear cell carcinoma.targeted therapy | kidney cancer | VHL | hepatocellular carcinoma K idney cancer is a leading cause of cancer-related deaths in the United States. Metastasis to distant organs including the lung, bone, liver, and brain is the primary cause of death in kidney cancer patients, as only 12% of patients with metastatic kidney cancer will survive past 5 y, in comparison with 92% of patients with a localized disease (1). Because kidney cancer is chemo-and radiation-resistant, targeted therapies are needed for the prevention and management of metastatic kidney cancer.The von Hippel-Lindau (VHL)-hypoxia-inducible transcription factor (HIF) pathway is a critical regulator of clear cell renal cell carcinoma (ccRCC) tumor initiation and metastasis. VHL is a classic tumor suppressor controlling tumor initiation in ∼90% of ccRCC tumors (2, 3). VHL is the substrate recognition component of an E3 ubiquitin ligase complex containing the elongins B and C (4, 5), Cullin-2 (6), and Rbx1 (7) that targets the hydroxylated, oxygen-sensitive α-subunits of HIFs (HIF-1, -2, and -3) for ubiquitination and degradation by the 26S proteasome (8, 9). Thus, the primary function ascribed to VHL is the regulation of HIF protein stability. In VHL-deficient tumors, HIF transcriptional activity is constitutively active and contributes to both ccRCC tumor initiation and metastasis (8-11). Although many downstream HIF targets controlling ccRCC tumor initiation have been defined, key targets involved in ccRCC metastasis remain to be identified.AXL, a member of the TAM family of receptor tyrosine kinases (RTKs), has recently been described as an essential mediator of cancer metastasis. Additionally, AXL has been reported to mediate RTK crosstalk and resistance to targeted kina...