The exponential growth of open-source package ecosystems, particularly NPM and PyPI, has led to an alarming increase in software supply chain poisoning attacks. Existing static analysis methods struggle with high false positive rates and are easily thwarted by obfuscation and dynamic code execution techniques. While dynamic analysis approaches offer improvements, they often suffer from capturing non-package behaviors and employing simplistic testing strategies that fail to trigger sophisticated malicious behaviors. To address these challenges, we present OSCAR, a robust dynamic code poisoning detection pipeline for NPM and PyPI ecosystems. OSCAR fully executes packages in a sandbox environment, employs fuzz testing on exported functions and classes, and implements aspect-based behavior monitoring with tailored API hook points. We evaluate OSCAR against six existing tools using a comprehensive benchmark dataset of real-world malicious and benign packages. OSCAR achieves an F1 score of 0.95 in NPM and 0.91 in PyPI, confirming that OSCAR is as effective as the current state-ofthe-art technologies. Furthermore, for benign packages exhibiting characteristics typical of malicious packages, OSCAR reduces the false positive rate by an average of 32.06% in NPM (from 34.63% to 2.57%) and 39.87% in PyPI (from 41.10% to 1.23%), compared to other tools, significantly reducing the workload of manual reviews * Both authors contributed equally to this research.