Despite long evolutionary separations, several sharks and tunas share the ability to maintain slow-twitch, aerobic red muscle (RM) warmer than ambient water. Proximate causes of RM endothermy are well understood, but ultimate causes are unclear. Two advantages often proposed are thermal niche expansion and elevated cruising speeds. The thermal niche hypothesis is generally supported, because fishes with RM endothermy often exhibit greater tolerance to broad temperature ranges. In contrast, whether fishes with RM endothermy cruise faster, and achieve any ecological benefits from doing so, remains unclear. Here, we compiled data recorded by modern animal-tracking tools for a variety of free-swimming marine vertebrates. Using phylogenetically informed allometry, we show that both cruising speeds and maximum annual migration ranges of fishes with RM endothermy are 2-3 times greater than fishes without it, and comparable to nonfish endotherms (i.e., penguins and marine mammals). The estimated cost of transport of fishes with RM endothermy is twice that of fishes without it. We suggest that the high energetic cost of RM endothermy in fishes is offset by the benefit of elevated cruising speeds, which not only increase prey encounter rates, but also enable larger-scale annual migrations and potentially greater access to seasonally available resources. marine predator | swim speed | migration | body temperature I n 1835, the British physician John Davy reported that skipjack tuna have body temperatures 10°C higher than ambient waters and considered this fish an exception to the general rule that fishes are cold-blooded (1). It is currently known that at least 14 species of tuna (family Scombridae) and five species of shark (four species in the family Lamnidae and one species in the family Alopiidae) have the ability to retain metabolic heat via vascular countercurrent heat exchangers, and to maintain the temperature of slow-twitch, aerobic red muscle (hereafter denoted RM) significantly above that of the ambient water (2-7). This "RM endothermy" (see SI Materials and Methods for terminology) in fishes represents a remarkable example of convergent evolution, because bony fishes and cartilaginous fishes diverged as long as 450 million years ago (8). In addition to elevated RM temperature, tunas and endothermic sharks share a number of morphological (e.g., medially located RM), physiological (e.g., high metabolic rates), and ecological (e.g., highly mobile and predatory lifestyle) characteristics (9).RM endothermy is an energetically expensive thermal strategy (9), and its convergent evolution indicates that the extra energetic costs incurred by RM endothermy can be outweighed by some ecological advantages. This topic has been discussed intensively, and two primary, nonmutually exclusive hypotheses have been proposed: expansion of the thermal niche and elevated cruising speeds (2). The thermal niche hypothesis states that fishes with RM endothermy can tolerate a broader range of water temperatures and, thus, can expand thei...