Purpose: Expression of the type 1 insulin-like growth factor receptor (IGF1R) confers adverse prognosis in clear cell renal cell cancer (CC-RCC). We recently showed that IGF1R expression is inhibited by the von Hippel-Lindau (VHL) tumor suppressor, and the IGF1R is up-regulated in CC-RCC, in which VHL is frequently inactivated. We tested the hypothesis that IGF1R up-regulation mediates resistance to cancer therapeutics, evaluating the effects of IGF1R depletion on sensitivity to cytotoxic drugs, which are ineffective in RCC, and the mammalian target of rapamycin (mTOR) inhibitor rapamycin, analogues of which have clinical activity in this tumor. Experimental Design: This study used CC-RCC cells harboring mutant VHL, and isogenic cells expressing functional VHL. Cells were transfected with nonsilencing control small interfering RNA (siRNA), or with one of two different IGF1R siRNAs. The more potent siRNA was modified by 2′-O-methyl derivatization for in vivo administration. Results: CC-RCC cells expressing mutant VHL and higher IGF1R were more chemoresistant than cells expressing functional VHL. IGF1R depletion induced apoptosis, blocked cell survival, and sensitized to 5-fluorouracil and etoposide. These effects were significantly greater in CC-RCC cells expressing mutant VHL, supporting the hypothesis that IGF1R up-regulation makes a major contribution to the chemoresistance associated with VHL loss.