PurposeThe purpose of this study was to analyse the influence of coronal lower limb alignment on collateral ligament strain.MethodsTwelve fresh‐frozen human cadaveric knees were used. Long‐leg standing radiographs were obtained to assess lower limb alignment. Specimens were axially loaded in a custom‐made kinematics rig with 200 and 400 N, and dynamic varus/valgus angulation was simulated in 0°, 30°, and 60° of knee flexion. The changes in varus/valgus angulation and strain within different fibre regions of the collateral ligaments were captured using a three‐dimensional optical measuring system to examine the axis‐dependent strain behaviour of the superficial medial collateral ligament (sMCL) and lateral collateral ligament (LCL) at intervals of 2°.ResultsThe LCL and sMCL were exposed to the highest strain values at full extension (p < 0.001). Regardless of flexion angle and extent of axial loading, the ligament strain showed a strong and linear association with varus (all Pearson's r ≥ 0.98; p < 0.001) and valgus angulation (all Pearson's r ≥ −0.97; p < 0.01). At full extension and 400 N of axial loading, the anterior and posterior LCL fibres exceeded 4% ligament strain at 3.9° and 4.0° of varus, while the sMCL showed corresponding strain values of more than 4% at a valgus angle of 6.8°, 5.4° and 4.9° for its anterior, middle and posterior fibres, respectively.ConclusionThe strain within the native LCL and sMCL was linearly related to coronal lower limb alignment. Strain levels associated with potential ultrastructural damages to the ligaments of more than 4% were observed at 4° of varus and about 5° of valgus malalignment, respectively. When reconstructing the collateral ligaments, an additional realigning osteotomy should be considered in cases of chronic instability with a coronal malalignment exceeding 4°–5° to protect the graft and potentially reduce failures.Level of EvidenceThere is no level of evidence as this study was an experimental laboratory study.