Proceedings of the 16th International Conference on Advances in Mobile Computing and Multimedia 2018
DOI: 10.1145/3282353.3282368
|View full text |Cite
|
Sign up to set email alerts
|

Management of Mobile Objects Location for Video Content Filtering

Abstract: The use of mobile devices and the development of geo-positioning technologies make applications that use location-based services very attractive and useful. These applications are composed of sensors that generate various and heterogeneous spatio-temporal data. Exploiting this spatio-temporal data to support video surveillance systems remains a relevant purpose for video content ltering. Since the data processed in such a context are heterogeneous (indoor and outdoor environment, various position types and ref… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
3
0
1

Year Published

2019
2019
2021
2021

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(4 citation statements)
references
References 19 publications
0
3
0
1
Order By: Relevance
“…Deng et al (2010) achieved the analysis and retrieval of the spatiotemporal behavior of dynamic video objects and geospatial information. Kim et al (2014) and Panta, Qodseya, Péninou, and Sedes (2018) achieved dynamic video object retrieval based on the geographical area, direction, keywords, and time by collecting the geospatial information of the cameras. In further research, Deng et al (2012) and Xiu et al (2018) added the trajectory of a dynamic video object into a spatial database.…”
Section: Related Workmentioning
confidence: 99%
“…Deng et al (2010) achieved the analysis and retrieval of the spatiotemporal behavior of dynamic video objects and geospatial information. Kim et al (2014) and Panta, Qodseya, Péninou, and Sedes (2018) achieved dynamic video object retrieval based on the geographical area, direction, keywords, and time by collecting the geospatial information of the cameras. In further research, Deng et al (2012) and Xiu et al (2018) added the trajectory of a dynamic video object into a spatial database.…”
Section: Related Workmentioning
confidence: 99%
“…Thus, the search work was divided and refined, and the retrieval analysis was processed individually in each camera to obtain the search results. In recent years, some studies have attempted to construct an AOI [45] and trajectory template [46] in geographic space by combining multi-camera fields of view to carry out the spatialization of trajectory retrieval condition description. Although these methods realize the geospatial analysis of the retrieval conditions, the video content of each camera must be retrieved separately due to the lack of spatial-temporal correlation analysis of different camera video object trajectories.…”
Section: Retrieval Of Mcvomentioning
confidence: 99%
“…Kapalı devre televizyon kamera sistemleri tarafından üretilen büyük verinin (big data) işlenmesiyle, ilgili sorunları çözmek için kamera konumu ve görüş alanı meta verilerini, mobil nesnelerin yörüngelerini ve video içerik analizi algoritmalarından (örneğin mobil nesnelerin tespiti ve hareketi) meta verileri birleştiren bir yaklaşım tanımlanmıştır. Bu metot ile araştırmacıların insan veya nesne içermeyen kameraların görüntüleri kaldırılarak, arama süresi kısaltılmaktadır (Panta, Qodseya, & Péninou, 2018). Videolar üzerinde duman tespit edilmesi ile ilgili yapılan diğer bir çalışmada transfer öğrenmeden faydalanılmıştır.…”
Section: Introductionunclassified