Interplay effects in highly modulated stereotactic body radiation therapy lung cases treated with volumetric modulated arc therapy. Purpose: To evaluate the influence of tumor motion on dose delivery in highly modulated stereotactic body radiotherapy (SBRT) of lung cancer using volumetric modulated arc therapy (VMAT). Methods: 4D-CT imaging data of the quasar respiratory phantom were acquired, using a GE Lightspeed 16-slice CT scanner, while the phantom reproduced patient specific respiratory traces. Flattening filter-free (FFF) dual-arc VMAT treatment plans were created on the acquired images in Pinnacle 3 treatment planning system. Each plan was generated with varying levels of complexity characterized by the modulation complexity score. Static and dynamic measurements were delivered to Gaf-Chromic EBT3 film inside the respiratory phantom using an Elekta Versa HD linear accelerator. The treatment prescription was 10 Gy per fraction for 5 fractions. Comparisons of the planned and delivered dose distribution were performed using Radiological Imaging Technology (RIT) software. Results: For the motion amplitudes and periods studied, the interplay effect is insignificant to the GTV coverage. The mean dose deviations between the planned and delivered dose distribution never went below −2.00% and a minimum dose difference of −5.05% was observed for a single fraction. However for amplitude of 2 cm, the dose error could be as large as 20.00% near the edges of the PTV at increased levels of complexity. Additionally, the modulation complexity score showed an ability to provide information related to dose delivery. A correlation value (R) of 0.65 was observed between the complexity score and the gamma passing rate for GTV coverage. Conclusions: As expected, respiratory motion effects are most evident for large amplitude respirations, complex fields, and small field margins. However, under all tested conditions target coverage was maintained.