The traditional cloud‐centric approach in IoT applications lack the speed and efficiency required for time‐critical tasks, resulting in network inefficiencies. To address this, the notions of Edge and Fog computing have emerged as alternatives. Fog computing facilitates the deployment of services and applications closer to the network's edge, lowering latency and allowing real‐time capabilities. It enhances reliability, fault tolerance, and connectivity in areas with spotty network coverage. Despite the fact that fog computing overcomes the limitations of cloud‐centric IoT processing, its adoption faces challenges like platform independence, interoperability, and portability. To tackle these challenges, the FogDEFT (Fog computing out of the box: Dynamic dEployment of Fog service containers with TOSCA) framework was developed. It complies to OASIS‐TOSCA standards and guarantees dynamic deployment of fog services on resource‐constrained devices while leveraging Docker containerization technology to ensure platform independence and interoperability. Due to its tight coupling with Docker Swarm, which is designed for medium‐sized deployments, the fogDEFT framework is constrained by Docker Swarm's limitations, hindering its ability to effectively manage large‐scale, automated, and resource‐efficient microservice deployments. To address these limitations, we propose FogDEFTKube, an extension of the FogDEFT architecture that incorporates Kubernetes for orchestration, Jenkins for continuous integration and deployment, and a comprehensive redefinition of the core capabilities of the FogDEFT architecture. This offers a promising solution that supports Kubernetes for handling scalable and highly available fog applications with ease while offering CI/CD. FogDEFTKube simplifies the modeling and deployment of fog services while abstracting the complexities of underlying fog networks.