The study of heart rate variability (HRV) has emerged as an essential component of cardiovascular health, as well as a physiological mechanism by which one can increase the interactive communication between the cardiac and the neurocognitive systems (i.e., the body and the brain). It is well-established that lack of HRV implies cardiopathology, morbidity, reduced quality-of-life, and precipitous mortality. On the positive, optimal HRV has been associated with good cardiovascular health, autonomic nervous system (ANS) control, emotional regulation, and enhanced neurocognitive processing. In addition to health benefits, optimal HRV has been shown to improve neurocognitive performance by enhancing focus, visual acuity and readiness, and by promoting emotional regulation needed for peak performance. In concussed athletes and soldiers, concussions not only alter brain connectivity, but also alter cardiac functioning and impair cardiovascular performance upon exertion. Altered sympathetic and parasympathetic balance in the ANS has been postulated as a critical factor in refractory post concussive syndrome (PCS). This article will review both the pathological aspects of reduced HRV on athletic performance, as well as the cardiovascular and cerebrovascular components of concussion and PCS. Additionally, this article will review interventions with HRV biofeedback (HRV BFB) training as a promising and underutilized treatment for sports and military-related concussion. Finally, this article will review research and promising case studies pertaining to use of HRV BFB for enhancement of cognition and performance, with applicability to concussion rehabilitation.