2009
DOI: 10.1117/12.817630
|View full text |Cite
|
Sign up to set email alerts
|

Maneuvering target tracking using probability hypothesis density smoothing

Abstract: The Probability Hypothesis Density (PHD) filter is a computationally tractable alternative to the optimal nonlinear filter. The PHD filter propagates the first moment instead of the full posterior density. Evaluation of the PHD enables one to extract the number of targets as well as their individual states from noisy data with data association uncertainties. Recently, a smoothing algorithm was proposed by the authors to improve the capability of PHD based tracking. Smoothing produces delayed estimates, which y… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2017
2017
2017
2017

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 9 publications
(20 reference statements)
0
0
0
Order By: Relevance