A systematic survey of 57 different paragenetic modes distributed among 5659 mineral species reveals patterns in the diversity and distribution of minerals related to their evolving formational environments. The earliest minerals in stellar, nebular, asteroid, and primitive Earth contexts were dominated by relatively abundant chemical elements, notably H, C, O, Mg, Al, Si, S, Ca, Ti, Cr, and Fe. Significant mineral diversification subsequently occurred via two main processes, first through gradual selection and concentration of rarer elements by fluid-rock interactions (for example, in hydrothermal metal deposits, complex granite pegmatites, and agpaitic rocks), and then through nearsurface biologically-mediated oxidation and weathering.We find that 3349 mineral species (59.2 %) are known from only one paragenetic context, whereas another 1372 species (24.2 %) are associated with two paragenetic modes. Among the most genetically varied minerals are pyrite, albite, hornblende, corundum, magnetite, calcite, hematite, rutile, and baryte, each with 15 or more known modes of formation. Among the most common paragenetic modes of minerals are near-surface This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America.The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press.